A Comparison of Genetic Representations and Initialisation Methods for the Multi-objective Shortest Path Problem on Multigraphs

نویسندگان

چکیده

Abstract This paper compares different solution approaches for the multi-objective shortest path problem (MSPP) on multigraphs. Multigraphs as a modelling tool are able to capture available trade-offs between objectives given section of route. For this reason, they increasingly popular in transportation problems with multiple conflicting (e.g., travel time and fuel consumption), such time-dependent vehicle routing, multi-modal planning, energy-efficient driving, airport operations. The multigraph MSPP is more complex than NP-hard simple graph MSPP. Therefore, approximate methods often needed find good approximation true Pareto front budget. Evolutionary algorithms have been successfully applied However, there has limited investigation their applications Here, we extend most genetic representations case compare achieved qualities. Two heuristic initialisation also considered improve convergence properties algorithms. comparison based diverse set instances, including both bi-objective triple objective problems. We found that metaheuristic approach provides solutions shorter running times compared an exact algorithm. were all be competitive. results encouraging future application time-constrained

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

Labelling Methods for the General Case of the Multi-objective Shortest Path Problem - a Computational Study

This paper is devoted to the study of labelling techniques for solving the multi-objective shortest path problem (MSPP) which is an extension of the shortest path problem (SPP) resulting from considering simultaneously more than one cost function (criteria) for the arcs. The generalization of the well known SPP labelling algorithm for the multiobjective situation is studied in detail and severa...

متن کامل

Evaluating FPTASes for the Multi-Objective Shortest Path Problem

We discuss three FPTASes for the Multi-Objective Shortest Path problem. Two of which are known in the literature, the third is a newly proposed FPTAS, aimed at exploiting small Pareto curves. The FPTASes are analyzed, empirically, based on worst case complexity, average case complexity and smoothed complexity. We also analyze the size of the Pareto curve under different conditions.

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

A New Ranking Path Algorithm for the Multi-objective Shortest Path Problem

In this paper, we present a new algorithm for solving the multi-objective shortest path problem (MSPP) which consists of finding all the non-dominated paths between two nodes s and t (ND s-t paths), on a network where a multiple criteria function is defined over the set of arcs. The main feature of the algorithm is that, contrarily to the previous most efficient approaches for the MSPP, not all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SN computer science

سال: 2021

ISSN: ['2661-8907', '2662-995X']

DOI: https://doi.org/10.1007/s42979-021-00512-z